Search results for "Functional near-infrared spectroscopy"
showing 10 items of 13 documents
2017
Functional near infrared spectroscopy (fNIRS) is a promising neuroimaging method for investigating networks of cortical regions over time. We propose a directed effective connectivity method (TPDC) allowing the capture of both time and frequency evolution of the brain’s networks using fNIRS data acquired from healthy subjects performing a continuous finger-tapping task. Using this method we show the directed connectivity patterns among cortical motor regions involved in the task and their significant variations in the strength of information flow exchanges. Intra and inter-hemispheric connections during the motor task with their temporal evolution are also provided. Characterisation of the …
Effects of Transcranial Direct Current Stimulation on Baseline and Slope of Prefrontal Cortex Hemodynamics During a Spatial Working Memory Task
2020
Background: Transcranial direct current stimulation (tDCS) has been shown to be an inexpensive, safe, and effective way of augmenting a variety of cognitive abilities. Relatively recent advances in neuroimaging technology have provided the ability to measure brain activity concurrently during active brain stimulation rather than after stimulation. The effects on brain activity elicited by tDCS during active tDCS reported by initial studies have been somewhat conflicted and seemingly dependent on whether a behavioral improvement was observed. Objective: The current study set out to address questions regarding behavioral change, within and between-participant designs as well as differentiatin…
Motor Cortex Function in Fibromyalgia: A Study by Functional Near-Infrared Spectroscopy
2019
Previous studies indicated changes of motor cortex excitability in fibromyalgia (FM) patients and the positive results of transcranial stimulation techniques. The present study aimed to explore the metabolism of motor cortex in FM patients, in resting state and during slow and fast finger tapping, using functional Near-Infrared Spectroscopy (fNIRS), an optical method which detects in real time the metabolism changes in the cortical tissue. We studied 24 FM patients and 24 healthy subjects. We found a significant slowness of motor speed in FM patients compared to controls. During resting state and slow movement conditions, the metabolism of the motor areas was similar between groups. The oxy…
Functional Near Infrared Spectroscopy System Validation for Simultaneous EEG-FNIRS Measurements
2019
Functional near-infrared spectroscopy (fNIRS) applied to brain monitoring has been gaining increasing relevance in the last years due to its not invasive nature and the capability to work in combination with other well–known techniques such as the EEG. The possible use cases span from neural-rehabilitation to early diagnosis of some neural diseases. In this work a wireline FPGA–based fNIRS system, that use SiPM sensors and dual-wavelength LED sources, has been designed and validated to work with a commercial EEG machine without reciprocal interference.
A Functional Near-Infrared Spectroscopy Examination of the Neural Correlates of Cognitive Shifting in Dimensional Change Card Sort Task
2020
This study aims to examine the neural correlates of cognitive shifting during the Dimensional Change Card Sort Task (DCCS) task with functional near-infrared spectroscopy. Altogether 49 children completed the DCCS tasks, and 25 children (Mage = 68.66, SD = 5.3) passing all items were classified into the Switch group. Twenty children (Mage = 62.05, SD = 8.13) committing more than one perseverative errors were grouped into the Perseverate group. The Switch group had Brodmann Area (BA) 9 and 10 activated in the pre-switch period and BA 6, 9, 10, 40, and 44 in the post-switch period. In contrast, the Perseverate group had BA 9 and 10 activated in the pre-switch period and BA 8, 9, 10 in the pos…
Design and realization of a portable multichannel continuous wave fNIRS
2014
A design and implementation of a portable functional Near InfraRed Spectroscopy embedded system prototype is described. In this theoretical and experimental work, we present an embedded system hosting 64 LED sources and 128 Silicon PhotoMultiplier detectors (SiPM). The elementary part of the structure is a flexible probe “leaf” consisting of 16 SiPMs, 4 couples of LEDs, each operating at two wavelengths, and a temperature sensor. The hardware system is based on an ARM main microcontroller that allows to perform both the switching time of LEDs and the acquisition of the SiPM outputs. The performed preliminary experimental tests achieved very promising results, thus demonstrating the effectiv…
Design and implementation of a portable fNIRS embedded system
2015
We report on the design, development and operation of a portable, low cost, battery-operated, multi-channel, functional Near Infrared Spectroscopy embedded system, hosting up to 64 optical sources and 128 Silicon PhotoMultiplier optical detectors. The system is realized as a scalable architecture, whose elementary leaf consists of a probe board provided with 16 SiPMs, 4 couples of bi-color LED, and a temperature sensor, built on a flexible stand. The hardware structure is very versatile because it is possible to handle both the switching time of the LED and the acquisition of the photodetectors, via an ARM based microcontroller.
Tracking Changes in Frontal Lobe Hemodynamic Response in Individual Adults With Developmental Language Disorder Following HD tDCS Enhanced Phonologic…
2020
Background: Current research suggests a neurobiological marker of developmental language disorder (DLD) in adolescents and young adults may be an atypical neural profile coupled with behavioral performance that overlaps with that of normal controls. Although many imaging techniques are not suitable for the study of speech and language processing in DLD populations, fNIRS may be a viable option. In this study we asked if fNIRS can be used to identify atypical cortical activation patterns in individual adults with DLD and track potential changes in cortical activation patterns following a phonological working memory training protocol enhanced with anodal HD tDCS stimulation to the presuppleme…
Increased gait variability during robot-assisted walking is accompanied by increased sensorimotor brain activity in healthy people
2019
Abstract Background Gait disorders are major symptoms of neurological diseases affecting the quality of life. Interventions that restore walking and allow patients to maintain safe and independent mobility are essential. Robot-assisted gait training (RAGT) proved to be a promising treatment for restoring and improving the ability to walk. Due to heterogenuous study designs and fragmentary knowlegde about the neural correlates associated with RAGT and the relation to motor recovery, guidelines for an individually optimized therapy can hardly be derived. To optimize robotic rehabilitation, it is crucial to understand how robotic assistance affect locomotor control and its underlying brain act…
2019
Gait and balance impairments are frequently considered as the most significant concerns among individuals suffering from neurological diseases. Robot-assisted gait training (RAGT) has shown to be a promising neurorehabilitation intervention to improve gait recovery in patients following stroke or brain injury by potentially initiating neuroplastic changes. However, the neurophysiological processes underlying gait recovery through RAGT remain poorly understood. As non-invasive, portable neuroimaging techniques, electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) provide new insights regarding the neurophysiological processes occurring during RAGT by measuring diffe…